Crassulacean acid metabolism: a continuous or discrete trait?
نویسندگان
چکیده
The key components of crassulacean acid metabolism (CAM) - nocturnal fixation of atmospheric CO2 and its processing via Rubisco in the subsequent light period - are now reasonably well understood in terms of the biochemical reactions defining this water-saving mode of carbon assimilation. Phenotypically, however, the degree to which plants engage in the CAM cycle relative to regular C3 photosynthesis is highly variable. Depending upon species, ontogeny and environment, the contribution of nocturnal CO2 fixation to 24-h carbon gain can range continuously from close to 0% to 100%. Nevertheless, not all possible combinations of light and dark CO2 fixation appear equally common. Large-scale surveys of carbon-isotope ratios typically show a strongly bimodal frequency distribution, with relatively few intermediate values. Recent research has revealed that many species capable of low-level CAM activity are nested within the peak of C3 -type isotope signatures. While questions remain concerning the adaptive significance of dark CO2 fixation in such species, plants with low-level CAM should prove valuable models for investigating the discrete changes in genetic architecture and gene expression that have enabled the evolutionary transition from C3 to CAM.
منابع مشابه
Crassulacean acid metabolism as a continuous trait: variability in the contribution of Crassulacean acid metabolism (CAM) in populations of Portulacaria afra
Portulacaria afra L. is a dominant facultative CAM species growing in the Southeastern Cape of South Africa. P. afra is well adapted to regions of the Spekboom thicket in areas of limited and sporadic rainfall. P. afra populations occur in isolated drainages. We hypothesized the utilization of CAM would vary in the different populations in response to rainfall and temperature gradients. Carbon ...
متن کاملVariation in the carbon isotope composition of a plant with crassulacean Acid metabolism.
The content of (13)C varies in plants with Crassulacean acid metabolism. Differences up to 3.5 per thousand in the (13)C/(12)C ratios were observed between leaves of different age in the same plant of Bryophyllum daigremontianum. Soluble and insoluble carbon in the same leaf differed up to 8 per thousand, the largest difference occurring in the leaves with the highest Crassulacean acid metaboli...
متن کاملIntracellular Localization of Some Key Enzymes of Crassulacean Acid Metabolism in Sedum praealtum.
The intracellular locations of six key enzymes of Crassulacean acid metabolism were determined using enzymically isolated mesophyll protoplasts of Sedum praealtum D.C. Data from isopycnic sucrose density gradient centrifugation established the chloroplastic location of pyruvate Pi dikinase, the mitochondrial location of NAD-linked malic enzyme, and exclusively nonparticulate (not associated wit...
متن کاملHydrogen, oxygen, and carbon isotope ratios of cellulose from submerged aquatic crassulacean Acid metabolism and non-crassulacean Acid metabolism plants.
Isotope ratios of cellulose and cellulose nitrate from aquatic Crassulacean acid metabolism (CAM) and non-CAM plants were determined. Cellulose oxygen istope ratios for all plants that grew together were virtually identical, whereas large differences were observed for hydrogen isotope ratios of cellulose nitrate between CAM and non-CAM plants. Carbon isotope ratios of cellulose nitrate did not ...
متن کاملEffects of osmotic gradients on vacuolar malic Acid storage: a basic principle in oscillatory behavior of crassulacean Acid metabolism.
Malate synthesis by CO(2) dark fixation and malate accumulation in the vacuoles of leaf slices of Kalanchoë daigremontiana Hamet et Perrier, a plant performing crassulacean acid metabolism, occurs only in external solutions where the osmotic pressure difference between the cells and the medium is low. Conversely, malate loss from the vacuoles depends on a high osmotic pressure difference betwee...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The New phytologist
دوره 208 1 شماره
صفحات -
تاریخ انتشار 2015